
Rephrasing Essentials of Object Oriented
Programming based on Testing Pre-requisites

Amarnath Singh, Biswajit Bishoyee, Santosh Kumar Rath, Dharmananda Parida

Dept of Computer Science & Engineering

Gandhi Institute for Education & Technology
Bhubaneswar, Orissa, India

Abstract-Even after thorough testing of a program, usually a
few bugs still remain. These residual bugs are usually uniformly
distributed throughout the code. It is observed that bugs in some
parts of a program can cause more frequent and more severe
failures compared to those in other parts. It should, then be
possible to prioritize the statements, methods and classes of an
object-oriented program according to their potential to cause
failures. Once the program elements have been prioritized, the
testing effort can be apportioned so that the elements causing
most frequent failure are tested more. Based on this idea, in this
paper we propose a program metric called the influence of
program elements. Influence of a class indicates the potential of
class to cause failures. In this approach, we have used the
intermediate graph representation of a program. The influence
of a class is determined through a forward slicing of the graph.
Our proposed program metric can be useful in applications such
as coding, Debugging, test case design and Maintenance etc

Key Words: Prioritization of Program Elements, Slicing,
Intermediate representation, Program testing, Object-oriented
programming

1. INTRODUCTION

Software solutions are increasingly permeating our everyday
life. Software industries are in immense pressure to provide
very reliable products where tolerance to bugs is very less.
Usually testing of the software products is carried out in
various levels to identify all defects existing in the software
product. However, for most practical systems, even after
satisfactorily carrying out the testing process, it is not
possible to guarantee that a software product is error free.
This situation is caused by the fact that input data domain of
most software products is very large. Also, each software
product development project is constrained by time and cost.
As a result, it is not practical to test a software product
exhaustively using each value that the input data may assume.
At present, testing takes on an average 50% of the total
development cost and time. Thus, possibility of increasing the
testing effort any further appears bleak. In traditional testing
techniques, each element of the software product is tested
with equal thoroughness. This causes usually a uniform
distribution of bugs in the software product. But presence of
bugs in some parts causes more severe and frequent failures
than other parts. For example, if a statement produces crucial
data that is useful for many other statements, then an error in
this statement would affect many other statements. So our
aim is to identify those more critical parts of a program, for

which more exhaustive testing has to be carried out. We
define influence of an element as the measure of criticality
and severity of that element. We proposed a metric to
compute the influence of a statement and influence of a
method. With the help of these two metrics we can calculate
the influence of a class. The characterization of code can help
in designing, coding, testing and maintenance phases of
software development cycle.

1.1Motivation for our work
In modern day society software’s are used in almost every
work. The nature of this software’s can be of moderate to
highly critical. Failures occurred in few software’s may not
be of big concern while it can be disastrous in others like
health monitoring sotwares. Each software is to be developed
in given time limits and in limited resources. Time and
resources used in testing phase of software development
cycle is about 50%. Now a days, most of the programs are
object-oriented. These object-oriented programs are quite
large and complex. It is much difficult to debug and test these
products. Program slicing techniques have been found to be
useful in applications such as program understanding,
debugging, testing, software maintenance and reverse
engineering.
Metrics help in appropriate design of test cases. The
important problem during test case design is that certain
statement or part of the program may be more crucial than
others; hence they need to be tested more thoroughly than
others. Dynamic analysis of program run can’t find the
problems that don’t happen in that run. Prioritizing of the
statements and the functions were so far done based on the
dynamic analysis. Criticality of the statements and the
functions based on static analysis is not yet done. This
motivates us to develop a program metric for finding the
influence of elements or object-oriented program. In the next
section, we identify major goals of the thesis.

1.2 Objective of our work
the main objective of our research work is to develop
efficient algorithms to find the influence of a statement,
influence of a method and influence of a class in a object-
oriented program Objective of our work is to isolate the bugs
from the software at early stages of software development
cycle which can cause a frequent and severe failures to the
software.

Amarnath Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2055-2059

2055

2. RELATED WORK:

2.1 Using Usage-Based Reading (UBR) technique
According to Schaech testing is not a separate phase in
software development life cycle. Testing must be done in
each phase. Special attention can be given, in each phase of
software development cycle, to the high priority elements to
reduce the probability of errors in these elements. From
requirement analysis to design phase, only non execution
based testing like inspection and review techniques are
applied. Prioritization of components is also necessary at
these phases to achieve better reliability level of the product
within the time constraints. Some work has been done at the
analysis and design level to identify the components, in
which a major error can severally affect the reliability of the
system. In a software project, a set of use cases are produced
first. These use cases represent the principal way in which the
system is to be built. These set of use cases act as a basis for
system design and testing. So, it is necessary to prioritize the
use cases

2.2 Slicing
A program slice is a part of the code that contributes in
computation of certain variable at a program point of interest.
More formally a slice can be defined as follows:
Program Slice: For statement s and variable v, the slice of a
program P with respect to the slicing criterion < s, v >
includes only those statements of P needed to capture the
behavior of v at s.
Static Slicing: this technique uses static analysis to derive
slicing. That is, the source code of the program is analyzed
and the slices are computed for all possible input values. No
assumptions are made about the input values. Since the
predicates may evaluate either to true or false for different
values, conservative assumptions have to be made, which
may lead to relatively large slices.
Dynamic Slicing: Dynamic slicing makes use of the
information about a particular execution of a program. The
execution of a program is monitored and the dynamic slices
are computed with respect to execution history. A dynamic
slice with respect to a slicing criterion < s, v >, for a
particular execution, contains those statements that actually
affect the slicing criterion in the particular execution.
Therefore, dynamic slices are usually smaller than static
slices and are more useful in interactive applications such as
program debugging and testing.
Backward slice: Backward slicing contains those parts of the
program that might directly or indirectly affect the slicing
criterion. Thus a static backward slice provides the answer of
the question: “which statements affect the slicing criterion?”
Forward Slice: Forward slice with respect to a slicing
criterion < s, v > contains all the parts of the program that
might be affected by the variables in v used or defined at the
program points. A forward slice provides the answer to the
question: “which statements will be affected by the slicing
criterion?

3. PROGRAM REPRESENTATION

In the following, we present a few basic concepts associated
with intermediate representation of program that are used in
later sections.

3.1 Control Flow Graph
The control flow graph (CFG) is an intermediate
representation for programs that is useful for data flow
analysis and for many optimization code transformations
such common sub expression elimination, copy propagation,
and loop invariant code motion.

3.2 Program Dependence Graph
The program dependence graph G of a program P is the
graph G = (N, E), where each node n 2 N represents a
statement of the program P. The graph contains two kinds of
directed edges: control dependence edges and data
dependence edges. A control (or data) dependence edges (m,
n) indicates that n is control (or data) dependent on m. Note
that the PDG of a program P is the union of a pair of graphs:
Data dependence graph and control flow graph of P.

3.3 System Dependence Graph
The PDG can’t handle procedure calls. Hurwitz. Introduced
the System Dependence Graph (SDG) representation which
models the main program together with all associated
procedures. The SDG is very similar to the PDG. Indeed, a
PDG of the main program is a sub graph of the SDG. In other
words, for a program without procedure calls, the PDG and
SDG are identical. The technique for constructing an SDG
consists of first constructing a PDG for
every procedure, including the main procedure, and then
adding dependence edges which link the various sub-graphs
together. An SDG includes several types of nodes to model
procedure calls and parameter passing:
• Call-site nodes represent the procedure call statements in
the program.
• Actual-in and actual-out nodes represent the input and
output parameters at call site.
They are control dependent on the call-site nodes.
• Formal-in and formal-out nodes represent the input and
output parameters at called procedures. They are control
dependent on procedure’s entry node. Control dependence
edges and data dependence edges are used to link the
individual PDGs in an SDG. The additional edges that are
used to link the PDGs are as follows:
• Call edges link the call-site nodes with the procedure entry
nodes.
• Parameter-in edges link the actual-in nodes with the formal-
in nodes.
• Parameter-out edges link the formal-out nodes with the
actual-out nodes.
• Summary edges are added to represent the transitive
dependencies that arise due to procedure calls.

Amarnath Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2055-2059

2056

Fig. A. Example program main and its System dependence

graph.

4. PROPOSED METHODS

4.1 Prioritization of Program Elements
In this section, we present our approach to prioritize program
elements in accordance to the thoroughness with which they
should be tested. We first provide an overview of our
approach. Subsequently we provide our approaches to
calculate the influence of statement, influence of method and
influence of class respectively.
4.1.1. Overview of Our Approach
An object-oriented program comprises of a set of classes. We
assume that each class consists of variables and methods.
Influence of a class is sum of influence of all its elements. So
we calculate influence of each statement and if a statement
involves a method call then influence of method will also be
calculated. Our approach is based on static analysis of the
code and it does not consider the value of variables. So it

can’t deal with recursive function calls and loops effectively.
Sum of influence of all statements and all relevant methods is
the influence of class. This approach statically computes the
influence of a class. Execution of program is not necessary.
First, we construct the intermediate representation
(SDG/ESDG) of the program. Then, we calculate the
influence of desired element using the proposed algorithms.
We first discuss computation of influence of a statement, then
subsequently influence of method and influence of class are
discussed.
4.1.2 Influence of a Statement
In a program the result of one statement may depend on the
result computed by other statements. If the influence is more,
then the statement is more critical. The influence of the
statement is defined by the number of other statements of the
given program which use that variable directly or indirectly.
We give a metric to calculate influence considering no call
vertex. If a statement is call vertex then its influence will be
calculated separately using the influence of
method metric and will be added to get total influence of the
desired statement. Influence of the statement expressed as a
percentage is given by:

Let us say Influence (u, stmt) denote the node u and statement
‘stmt0, where stmt can be any variable or ‘if’ or ‘while’ or
‘printf’ etc. Let (x1, u1), (x2, u2), ... (xk, uk) be all there
outgoing data flow edges of u in the PDG of that program.
Where x1, x2, ..., xk are dependency edges and u1, u2, ..., uk
are nodes. So influence of a statement corresponding to node
u is given by:
Influence(u, stmt) = {u1, u2, ..., uk} [{Influence(u1,
stmt1)[Influence(u2, stmt2)[. . .[Influence(uk, stmtk)}

Algorithm
Input: Program code and the statement.
Output: Inf luence of given statement.
StmtInfluence (statement){
1. Construct ESDG of the program statically.
2. For statement traverse it’s all dependency edges and mark
them.
3. For each marked node repeat step 2 until no dependency
edges are found.
4. If any marked node is a call vertex then calculate its
influence using
Method Influence (call vertex).
5. Count marked nodes and calculate Influence using
expression (1).
6. Stop.
}
4.1.3. Influence of a Method
The result computed by a method of a program affects the
other methods and statements. A method may influence one
or more methods and other statements of the program. If the
influence of the method is more, then method is more critical.
We have designed a program metric called Influence of a
method for object-oriented programs. The influence of a

Amarnath Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2055-2059

2057

method is defined by the number of other statements and
other methods of the given program, which uses the results
computed by the method directly or indirectly. If other
methods are called by the given method for which we want to
find the influence, then the overall influence of the method
will be influence of the method itself and the influence of
other called methods. We first represent the input program in
ESDG as intermediate representation and after that we apply
our proposed algorithm on resulting ESDG. Then we count
the number of nodes influenced from that method’s formal
parameter out nodes as well as other called method’s formal
out parameters and we count the total no nodes in graph. The
influence of a method expressed as a percentage is given by:

Algorithm
Input: A program and name of the method of that program.
Output: Influence of the method.
Method Influence (call vertex){
1. Construct ESDG of the program.
2. For the method entry vertex of the method traverse all
edges and mark them visited.
3. For each visited node traverse through it’s all edges
marking it’s corresponding node as
visited and if it is not a call-vertex node then mark it as
influenced if not marked already.
4. Check each visited node and if it is a call vertex, traverse
through it’s call edge and:
(a) If next node is polymorphic call vertex then traverse
through each polymorphic edge and insert corresponding
node in a queue Q.
(b) Else insert the node in Q.
5. Take out nodes from Q. Mark the node influenced and
repeat step 2 to 4 for the node.
6. Repeat step 5 until Q is empty.
7. For each node marked as influenced traverse it’s all the
edges and mark each as influenced if not marked already.
8. Calculate influence for the method using expression (2).
9. Stop.
}

4.1.4. Influence of a class
The influence of a class is defined as the sum of the influence
of other elements of the given program which are using
results of the class directly or indirectly. We first represent
the input program in ESDG as intermediate representation
and after that we apply our proposed algorithm on resulting
ESDG. Then, we count the number of nodes influenced.
Influence of nodes which involves function call will be
calculated by theMethodInfluence (call vertex) metric
while, influence of all other statements are calculated using
StmtInfluence(statement) metric.
The influence of a class is given as:

Algorithm
Input: Sample program and name of the class.
Output: Influence of the class.
Class Influence (class name)
{
1. Construct the ESDG of the program statically.
2. Traverse to each member of the class through class entry
vertex and mark each as visited.
3. For each visited node traverse through its all edges
marking it’s corresponding node as
visited and if it is not a call-vertex node then mark it as
influenced if not marked already.
4. Check each visited node and if it is a call vertex then
calculate influence of this statement using
Method Influence (call vertex).
5. For each node marked as influenced traverse it’s all the
edges and mark each as influenced
if not marked already.
6. Calculate influence of the given class using expression (3).
7. Stop.
}
4.1.5. Complexity Analysis
If N number of nodes are created in ESDG, at each node there
can be maximum N − 1 number of edges.
So, worst case space complexity will be N × (N − 1) = O(N2).
Similarly, in the PDG (SDG) any edge is visited at most
once.
Time complexity= O(m) where m is a total number of edges

5. THREATS TO VALIDITY OF RESULTS

It is required for an experimental study that the results be
valid for most general and real life cases. It will be invalid to
perform experimental studies for some particular and biased
test suites, inputs or failures which may not be targeting real
faults. In order to justify the validity of the results of our
experimental studies we got the following list of threats:
• Biased test suite design and influencing results.
• Seeding biased errors in two copies of each case study.
• Testing only for selected failures and loosing generality of
results.
• Using testing methodologies which may only be suitable for
some particular bugs while may not reveal other common and
frequent bugs.
5.1 Measures taken to overcome the threats
In order to overcome the above mentioned threats and
validate the results for most common and real life cases, we
have taken the following corrective measures:
• Designed same test suite for both traditional and prioritized
testing.
• Used same seeded faults for both the copies.
• We have taken care that the seeded faults match with
commonly occurring bugs.
• We have taken in consideration following four kind of
failures which include almost all variety of bugs.
1. Catastrophic: Defects that can cause very serious effects
(system may loose functionality,security concerns etc.)

Amarnath Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2055-2059

2058

2. Major: Defects that would cause serious consequences for
the system like loosing
some important data.
3. Minor: Defects that can cause small or negligible
consequences for the system. Ex.
displaying results in some different format.

5.2. Results

4. No Effect: This may not necessarily hamper the system
performance, but they may give slightly different
interpretation and generally avoidable. Ex. simple
typographic errors in documentation.
• We have inserted mutation operator to seed fault. Using
mutation operator we can not guarntee that the faults seeded
are representatives of a particuler population, but we can
ensure that a wide variety of fults are systemmatically
inserted in a somewhat impartial and random fashion

CONCLUSION
We have purposed a program metric which called the
influence of program elements. The influence shows that
which elements affect more than others in a program. So the
elements with higher influence are more critical and presence
of bugs in them will increase the probability of failure of
software. So, the purposed metrics greatly help in finding out
the more critical elements and guides to take utmost care in
developing the elements with higher influence during
software development cycle. This also suggests that elements
with least priority can be tested with least number of test
cases rather than giving similar efforts as more critical
elements and hence saving the very important time for testing
the more critical elements.
• It is based on static analysis of a program.
• Useful in test case design and test case prioritization.
• Useful to characterize the influence of various components
of the program. So one can have more reliable components to
be tested thoroughly.

REFERENCES
[1] Horwitz S., Reps T., and Binkley D. Inter-procedural slicing using

dependence graphs.ACM Transactions on Programing Languagees and
Systems 12, 1(1990), 26-61.

[2] Zhang X., Gupta R., and Zhang Y. Efficient forward computation of
dynamic slices using reduced ordered binary decision diagrams. In
International conference of Software Engineering(2004).

[3] Agrawal H., DeMillo R, A., and Spafford E. H. Debugging with dynamic
slicing and backtracking. Software Practice and Experience 23,
6(1993), 589-616.

[4] Dhamdhare D.M., Gururaja K., and Ganu P. G. A compact education
history for dynamic slicing. Information Processing Letters 85(2003),
145-152.

[5] Korel B., and Rilling J. Dynamic Program Slicing Methods. Information
and Software Technology 40(1998), 155-163.

[6] Xu B., Qian J., Zhang X., Wu Z., and Chen L. A Brief Survey of program
slicing. ACM SIGSOFT Software Engineering Notes 30, 2(2005), 1-
36.

[7] WeiserM. Programmers use slices when debugging. Communication of
ACM25, 7(1982),446-452.

[8] Ball T. The Use of Control Flow and Control Dependence in Software
Tools. PhD thesis,Computer Science Department, University of
Wisconsin-Madison, 1993.

[9] Song Y., and Huynh D. Forward Dynamic Object-Oriented Slicing.
Application Specific Systems and Software Engineering and
Technology(ASSET’99). IEEE CS Press, 1999.

[10] Ferrante J., Ottenstein K., and Warren J. The program dependence graph
and it’s use in optimization. ACM Transactions on Programming
Languages and Systems 9, 3(1987), 319-349.

Amarnath Singh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2055-2059

2059

